
Architectural Support for Task Dependence Management
with Flexible Software Scheduling

Emilio Castillo∗†, Lluc Alvarez∗†, Miquel Moreto∗†, Marc Casas∗, Enrique Vallejo‡,
Jose Luis Bosque‡, Ramon Beivide‡, Mateo Valero∗†

∗Barcelona Supercomputing Center, †Universidad Politecnica de Catalunya, ‡Universidad de Cantabria,
name.surname@bsc.es, name.surname@unican.es

This is an earlier accepted version; a final version of this work will be published in the Proceedings of the 24th IEEE
International Symposium on High-Performance Computer Architecture (HPCA 2018). Copyright belongs to IEEE.

Abstract—The growing complexity of multi-core architec-
tures has motivated a wide range of software mechanisms
to improve the orchestration of parallel executions. Task
parallelism has become a very attractive approach thanks to its
programmability, portability and potential for optimizations.
However, with the expected increase in core counts, fine-grained
tasking is required to exploit the available parallelism, which
increases the overheads introduced by the runtime system.

This work presents Task Dependence Manager (TDM), a
hardware/software co-designed mechanism to mitigate runtime
system overheads. TDM introduces a hardware unit, denoted
Dependendence Management Unit (DMU), and minimal ISA
extensions that allow the runtime system to offload costly
dependence tracking operations to the DMU and to still
perform task scheduling in software. With lower hardware cost,
TDM outperforms hardware-based solutions and enhances the
flexibility, adaptability and composability of the system. Results
show that TDM improves performance by 12.3% and reduces
EDP by 20.4% on average with respect to a software runtime
system. Compared to a runtime system fully implemented in
hardware, TDM achieves an average speedup of 4.2% with
7.3x less area requirements and significant EDP reductions. In
addition, five different software schedulers are evaluated with
TDM, illustrating its flexibility and performance gains.

I. INTRODUCTION

The end of Dennard scaling [1] and the subsequent
stagnation of the CPU clock frequency has caused a dramatic
increase in the core counts of multi-cores [2]. To fully
exploit these large core counts in an efficient way, the
hardware and the software stack must collaborate to avoid
performance problems such as load imbalance or memory
bandwidth exhaustion, while improving energy efficiency.

The growing complexity of multi-cores has brought so-
phisticated software mechanisms aiming at optimally man-
aging parallel workloads. One of the most extended approa-
ches is task-based programming models, such as OpenMP
4.0 [3], that apply a data-flow execution model to orches-
trate the execution of the parallel tasks respecting their
control and data dependences. These programming models
are a very appealing solution to program complex multi-
cores due to their benefits in performance, programmability,
cross-platform flexibility, and potential for applying generic
optimizations at the runtime system level [4]–[9].

A key aspect of this execution model is the granularity
of the tasks. Fine-grain parallelism exposes large degrees of

concurrency to the hardware, which favors load balancing
and provides more flexibility to exploit constructive inter-
ference on shared resources. However, it can also bring
large software overheads due to the runtime system activity,
which involves creating the tasks, tracking the dependences
between them, and scheduling them to cores. All these
actions require synchronizing threads to perform complex
operations on internal data structures of the runtime system.

Different solutions have been proposed to support fine-
grain parallelism on multi-cores [10]–[14]. These ap-
proaches manage fine-grained tasks completely in hard-
ware, relying on specific execution models to scale to
large core counts. However, pure hardware solutions suffer
from limited adaptability to changes in the software layers.
Tasking support in shared memory programming models is
continuously evolving, incorporating new features such as
dependence domains or task nesting that are not easy to
support at the architecture level. Moreover, implementing a
fixed scheduling policy in hardware reduces the adaptability
to different application and system characteristics.

Using different scheduling policies is key to maximize
the efficiency of applications and systems [15]. Considering
task criticality [16], [17] or data locality [13] provides
significant benefits in certain contexts. Moreover, the adapt-
ability granted by software task schedulers is essential in
modern high-performance computing systems with off-chip
accelerators and multi-socket configurations, that can fur-
ther improve performance and energy efficiency but require
software intervention for task scheduling and data motion.

This paper presents Task Dependence Manager (TDM), a
hardware/software co-designed mechanism that accelerates
the most time consuming activities of the runtime sys-
tem with specialized hardware while allowing flexible task
scheduling policies in software. TDM minimally extends
the ISA to allow the runtime system to communicate task
creation, task dependences and task finalization, and to re-
quest ready tasks. At the architecture level, TDM introduces
a Dependence Management Unit (DMU) that maintains
the information of the in-flight tasks and the dependences
between them by means of a set of tables and lists. Tasks
ready for execution are exposed to the runtime system, which
has the freedom for deploying any software scheduling
policy. The main contributions of this paper are:



• A novel hardware/software co-designed mechanism to
accelerate task creation and dependence tracking while
supporting flexible software schedulers. The hardware
design includes novel architectural techniques to minimize
conflicts in associative structures and to reduce the hard-
ware cost with respect to previous proposals.

• A detailed evaluation of TDM on a full-system simulator
that includes application, runtime system, operating sys-
tem and architecture layers. On a 32-core processor, TDM
achieves a 12.3% average speedup and a 20.4% reduction
in energy-delay product (EDP) with respect to a baseline
implemented in software.

• A proof of the potential of TDM when combined with
five software schedulers that exploit the characteristics
of different applications. Thanks to this flexibility, TDM
outperforms a runtime fully implemented in hardware by
an average 4.2%, improves EDP by an average 6.2% and
reduces the area overhead by 7.3×.
This paper is organized as follows. Section II introduces

the background in task-based programming models. Sec-
tion III describes TDM. Sections IV and V present the ex-
perimental setup and a design space exploration. Section VI
evaluates TDM using different software schedulers and com-
pares TDM to other proposals. Sections VII describes the
related work and Section VIII draws the main conclusions.

II. BACKGROUND AND MOTIVATION

A. Task-based Programming Models
Task-based data-flow programming models such as

OpenMP 4.0 [3] conceive the execution of a parallel program
as a set of tasks with dependences among them. Typically,
the programmer writes sequential code and adds annotations
to define the tasks of the program and to specify which data
are used by each task (called input dependences or inputs),
and which data are produced by each task (called output
dependences or outputs). With this information, the runtime
system manages the parallel execution by means of a Task
Dependence Graph (TDG), a directed acyclic graph where
the nodes are tasks and the edges are dependences between
them. Figure 1 shows the task-based implementation of
a Cholesky factorization benchmark and its corresponding
TDG. The code uses OpenMP 4.0 clauses to specify tasks
and dependences (#pragma omp task depend(in/out/inout)).
At a given moment, the runtime only works with a portion
of this TDG, which is being built dynamically.

Task-based data-flow programming models use a decou-
pled execution model where tasks are created in program
order and are executed asynchronously following the syn-
chronization rules defined by the dependences. All threads
may execute runtime system activity as well as tasks defined
in the application source code. Figure 1 shows the execution
timeline of the Cholesky benchmark on an 8-core system. In
this experiment, core 1 performs most of the runtime system
activities while the other cores mainly execute tasks.

float A[N][N][M][M] // NxN blocked matrix with     
// MxM blocks

for (int j = 0; j<N; j++) {
for (int k = 0; k<j; k++)

for (int i = j+1; i<N;i++)
#pragma omp task depend(in:A[i][k],A[j]k]) 
depend(inout:A[i][j]);
sgemm_t(A[i][k],A[j][k],A[i][j]);

for (int i = j+1; i<N;i++)
#pragma omp task depend(in:A[j][i]) depend(inout:A[j][j]);
ssyrk_t(A[j][i],A[j][j]);

#pragma omp task depend(inout:A[j][j])
spotrf_t(A[j][j]);

for (int i= j+1; i<N; i++)
#pragma omp task depend(in:A[j][j]) depend(inout:A[i][j]);
strsm_t(A[j][j], A[i][j]);

}         

Core 8
Core 7
Core 6
Core 5
Core 4
Core 3
Core 2
Core 1

Runtime System Task Execution Idle

time

Figure 1: Cholesky task-based annotated code (right), task
dependence graph (left), and execution timeline (bottom).

The master thread executes the program sequentially and,
when it encounters a task creation statement, it enters the
task creation phase. The new task is assigned a unique task
descriptor that stores all the relevant information of the
task such as its dependences, its number of successors and
a pointer to the function to be executed. The address of
this task descriptor is used to identify the task. To detect
dependences with older tasks, the inputs and outputs of the
new and older task are compared. The new task is marked
as a successor of older tasks if a RAW, WAR or WAW
dependence is found, and is inserted in the TDG accordingly.

The remaining worker threads iterate on the two main
phases of the task-based data-flow execution model. The
master thread also adopts this behavior when it reaches a
global synchronization point.
• In the task scheduling phase the thread selects a task to

be executed. The runtime system keeps a pool of ready
tasks and selects one of them based on a scheduling
algorithm. Different scheduling policies may adapt better
to the characteristics of an application, and can provide
significant benefits in certain contexts [16], [17].

• In the task execution phase the thread executes the code
of the task that has been just scheduled. After the task
is executed, the thread notifies the runtime system that
the task has finished. The outputs of this task become
available and its successor tasks may become ready if all
its dependences are satisfied. In such case, it is added to
the pool of ready tasks and will be selected for execution
in future scheduling phases.
Apart from these phases, threads can experience idle time.

In parallel regions idle time occurs when a thread enters the
task scheduling phase and the pool of ready tasks is empty.
This happens if the pace at which tasks are created is lower
than the pace at which tasks are executed, or when threads



bla cho ded fer flu hist LU QR str AVG0
20
40
60
80

100
120

Re
l. 

tim
e 

(%
)

DEPS SCHED EXEC IDLE

Figure 2: Execution time breakdown of the master and
worker threads during the parallel execution. Different states
represent dependence management operations during task
creation and task finalization (DEPS), scheduling (SCHED),
task execution (EXEC), and idle time (IDLE).

reach a barrier. In addition, idle time happens in sequential
parts of the program, where only one thread executes the
sequential code and the other threads are waiting.

B. Characterizing Runtime System Activity

Performance and scalability of parallel programs is fun-
damentally limited by the overheads introduced in the form
of idle time and runtime system phases to manage tasks
and dependences [18]. These two sources of overheads
are tightly related to the granularity of the tasks. On the
one hand, coarse-grain tasking reduces the overheads of
task creation and dependence management, but compromises
load balancing and scalability on large-scale multi-cores. On
the other hand, fine-grain tasking favors load balancing, but
increases the overheads of the runtime system in dependence
management and task scheduling phases. In addition, many
operations in the runtime system phases need to be serialized
to avoid race conditions, potentially becoming a bottleneck
as concurrency increases with higher core counts.

We characterize the cost of the runtime system phases in
9 representative task-based parallel benchmarks running on
a simulated 32-core processor. The optimal task granularity
in each experiment has been carefully selected to minimize
execution time1. Figure 2 shows a complete break-down of
the time spent in the main program phases for the master
(left bars) and the worker threads (right bars): task creation
and dependence management (DEPS), scheduling (SCHED),
task execution (EXEC), and idle time (IDLE).

The master thread spends a significant portion of the time
in DEPS for Cholesky, QR and streamcluster (84%, 92% and
40%, respectively). In these cases, illustrated in the timeline
of Figure 1 for Cholesky, the bottleneck of the execution is
the pace at which tasks are created by the master thread, that
limits the amount of available tasks for the worker threads
and causes idle time. DEPS has a lower impact in the rest of
benchmarks, below 25.8%, but idle time is still relevant in
the worker threads due to load imbalance. Most of the time

1Section IV describes in detail the experimental setup, and Figure 6
explores the optimal task granularity of each benchmark.

spent in DEPS is devoted to identify the dependences of a
task when it is created, which requires comparing the inputs
and outputs of the new task against the ones of the older
tasks. Thread synchronization overheads are negligible, as
they only represent 0.9% of the DEPS time and 2.2% of the
SCHED time. Overall, worker threads spend most of the
time executing tasks (65% of the time on average) or idle
(32% of the time), and the master thread spends a significant
amount of time running tasks in the majority of benchmarks,
while scheduling time is much less significant.

Adding architectural support for the runtime system can
mitigate the overheads of fine-grained tasking. Approaches
such as Carbon [10] move the task scheduler to the hardware
level, while Task Superscalar [11] offloads all the runtime
system activities to the architecture, including dependence
management and task scheduling. The main drawback of
these schemes is that the task scheduler is fixed in the ar-
chitecture, which compromises the flexibility of the system.
The system flexibility provided by software runtime systems
is of paramount importance in modern systems with multiple
sockets and off-chip accelerators, since the task scheduler
needs to off-load tasks to external components that are only
visible to the software and often require software-initiated
actions such as data movement between address spaces. To
maintain these advantages, approaches such as ADM [15]
add architectural support for asynchronous exchanges of
short messages between cores that can be used to implement
low-overhead thread synchronization primitives.

All these solutions drastically reduce runtime system
overheads, even in scenarios with extremely fine-grained
tasks running on hundreds of cores. However, in scenarios
with mid-grained or less extreme fine-grained tasks2, the
cost of task scheduling is relatively low, less than 11% in
all benchmarks in Figure 2, so the benefits of flexible soft-
ware scheduling can be achieved with minimal performance
impact. In contrast, the cost of dependence management
operations during task creation is crucial for performance
because it determines the idle time in the whole execution,
so adding hardware support to perform this operation can
effectively reduce the runtime system overheads.

This work addresses the performance bottlenecks of pure
software data-flow runtime systems by proposing TDM,
a hardware/software co-designed mechanism that performs
dependence management operations efficiently in hardware
and allows the usage of different task scheduling policies in
the runtime system. Thanks to this separation of concerns,
TDM is able to mitigate the performance overheads intro-
duced in runtime system phases while providing flexibility
to the software layers, so the resulting system is more adapt-
able, composable, and is able to capitalize on the benefits
of different scheduling policies for different applications.

2In this paper we use task granularities up to 3 orders of magnitude
bigger than other works of the literature.



DAT

Dep.
Table

Task 
Table

RLA

DLA

SLA

TAT

DMU

NoC

RQ

Figure 3: DMU architectural support overview.

III. TDM DESIGN

TDM is a hardware/software co-designed mechanism to
support the runtime system. TDM balances the higher cost
and performance of implementing mechanisms in hardware,
with the higher flexibility and adaptability of implementing
policies in software. At the architecture level TDM intro-
duces a Dependence Management Unit (DMU) that keeps a
representation of the TDG and allows the runtime system to
offload costly dependence tracking operations, while leaving
scheduling decisions to the runtime system. As a result,
TDM avoids the overheads of software runtime systems and
maintains the flexibility of supporting software schedulers.

The runtime system interacts with the DMU to commu-
nicate task creation, the data dependences of the tasks, and
task finalization. With this information, the DMU generates
the TDG, tracks dependences between tasks, identifies tasks
ready for execution, and exposes them to the runtime system.
The runtime system can request ready tasks to the DMU,
organize them in software data structures, and schedule them
to the cores according to any scheduling policy.

A. Runtime System - Architecture Interface

TDM offers an interface to the runtime system so that it
can cooperate with the DMU in the management of tasks.
The interface between the DMU and the runtime system
consists of four new ISA instructions. These instructions are
issued by the runtime system in the task creation and task
finalization phases to exchange information with the DMU.
• create task(task desc): In the task creation phase, the

runtime system uses this instruction to inform the DMU
that a new task is being created. The DMU receives the
task descriptor address of the new task.

• add dependence(task desc, dep addr, size, direction): Af-
ter creating a task, the runtime system traverses its list
of dependences and uses this instruction to inform the
DMU of the dependences of the task, sending the task
descriptor address, the address of the dependence, the size,
and the direction (input or output). With this information
the DMU tracks tasks and dependences and builds the
TDG to ensure dependences between tasks are fulfilled.

• finish task(task desc): When a task finishes its execution,
the runtime system uses this instruction to notify it to
the architecture. The DMU wakes up the successors of
the task and cleans up the information of the task and its
dependences from its internal structures.

Task descriptor 
Address

Task 
ID

0x8AB0…4600 0
0x8AB0…5240 2

Task descriptor Predec. Successor Dep. 
Address count count list ptr. list ptr.

0x8AB0…4600 3 1 0 11

0x8AB0…5240 2 1 8 0

... ... ... ... ...

Dependence
Address

Dep.
ID

0x0BCE…0860 2
0x0964…4628 1

... ...

Last writer
task ID

Reader
List ptr.

2 48
0 2

... ...

TAT

DAT

Task Table

Dependence Table

0

2

1

2

... ...

Figure 4: Overview of TAT, DAT, Task and Dependence
Table. Two active elements are presented in each table.

• get ready task() → task desc, #succ: Just after notifying
a task has finished, the runtime system uses this instruction
to request to the DMU the successors of the finished tasks
that have just become ready. This instruction returns the
task descriptor address and its number of successors.

B. DMU Hardware Design

The DMU is a centralized module connected to the
network-on-chip whose main goal is to keep all the infor-
mation of the in-flight tasks, track the dependences between
them, and expose ready tasks to the runtime system. Figure 3
presents its different components. Each task or dependence
is internally identified by an ID, which maps to its location
in the corresponding table. Tables and list arrays employ
direct-access SRAM, addressed by the task or dependence
IDs. Two set-associative structures, TAT and DAT, are used
to map task descriptor and dependence addresses to internal
DMU IDs. The general behavior of each module follows:
• The Task and Dependence Alias Tables (TAT and DAT)

keep a translation of task descriptor addresses or depen-
dence addresses to internal task or dependence IDs.

• The Task Table and the Dependence Table track all the
information of the in-flight tasks and dependences.

• The List Arrays (Successor, Dependence and Reader)
contain lists of elements associated to in-flight tasks or
dependences. The successor and reader lists store task
IDs, while the dependence list stores dependence IDs.

• The Ready Queue (RQ) is a FIFO queue that contains task
IDs ready to be executed.
1) Task and Dependence Identifier Renaming: The alias

tables are depicted in Figure 4. Both TAT and DAT modules
consist of a directory that maps task descriptor and depen-
dence addresses to task and dependence IDs, respectively,
and an additional queue of free IDs. Both modules are
implemented using set-associative memories.

Selecting the correct bits to index the DAT is crucial
to avoid conflicts. It is common that different tasks access
different blocks of the same data structure, so the lower bits



5

0

List 2 ptr.
(7 elems.)

List 1 ptr.
(9 elems.)

ID1 ID2 ID3 ID4 Next
1 4 16 2 1
23 10 11 8 4
11 26 24 0xFFF 2

0xFFF 0xFFF 0xFFF 0xFFF 0
17 0xFFF 0xFFF 0xFFF 4
3 5 8 10 2

0

5

Figure 5: Overview of a generic list array.

of the addresses of different dependences share the same
values. For example, if tasks access different 4KB blocks of
a vector, the lower 12 bits of all the dependences are equal.
If these bits are used to index the DAT, only one set is used
and many conflicts happen. To avoid conflicts, the size of
the dependence is used to select the address bits used as
index, which start at the log2size lower bit.

The alias tables allow the rest of DMU modules to work
with internal IDs, which offers two important advantages.
First, the Task and Dependence Tables employ direct access,
indexed with the internal task and dependence IDs, avoiding
costly associative lookups of 64-bit task descriptor and de-
pendence addresses. Therefore, using TAT and DAT a single
lookup is required per DMU instruction, followed by many
subsequent direct accesses to the Task and Dependence
Tables, as explained in Section III-C. Second, the storage
requirements of the list arrays can be reduced significantly,
as the size of the internal IDs is much smaller than the 64-
bit identifiers used in the runtime system. Our experiments
in Section V-A show that DAT and TAT with 2048 entries
suffice for any application, so 11-bit IDs can be used and
the size of the list arrays is reduced by a factor of 5.8×.

2) Task and Dependence Tracking: The Task and De-
pendence Tables are used to keep the information of the
tasks and the dependences. The Task Table is an SRAM
indexed by the Task ID. Figure 4 shows each entry of the
Task Table contains the relevant information of a task: its
descriptor address, the number of successors and predeces-
sors, and pointers to the lists of successors and dependences.
The Dependence Table follows the same scheme to track
dependences, storing the task ID of the last task that writes
the dependence and a pointer to the list of readers.

The lists of successors, dependences and readers are
implemented in three list array structures. As shown in
Figure 5, each list array is an SRAM that can store multiple
lists. To accommodate a variable number of elements in each
list we use a storage layout inspired by UNIX filesystem
inodes. The maximum number of elements in each entry is
fixed by design (4 in the example), but the list can continue
in another entry. The Next control field of every entry points
to the entry in the list array where the list continues. The
Next field is set to the current entry number if the list finishes
in this entry. Invalid elements are set to all ones.

The Successor List Array uses this organization to store
the lists of successors of each in-flight task, identified by
their task IDs. Task IDs are also stored in the lists of the

Data: taskID, depID, dir
Insert depID in dependence list of taskID;
if lastWriterID of depID is valid then

Insert taskID in successor list of lastWriterID;
Increment #succ of lastWriterID;
Increment #pred of taskID;

end
if dir is In then

Insert taskID in reader list of depID;
end
if dir is Out then

for readerID in reader list of depID do
Insert taskID in successor list of readerID;
Increment #succ of readerID;
Increment #pred of taskID;

end
Flush reader list of depID;
Set lastWriterID of depID to taskID and mark valid;

end
Algorithm 1: Algorithm for add dependence instruction.

Readers List Array, which track the reader tasks of all the
in-flight dependences. The Dependence List Array keeps the
lists of dependences of the in-flight tasks, so dependence
IDs are stored in the lists. Note that OpenMP 4.0 uses the
input/output dependences provided by the programmer to
build the TDG when tasks are created in program order. The
DMU preserves this model by decoupling the dependences,
that are tracked in the dependence and readers lists, from the
edges of the TDG, that are tracked in the successors lists.

C. Operational Model

The runtime system triggers DMU operations using the
ISA instructions in the task creation and finalization phases.

1) Task Creation: The runtime system uses the cre-
ate task instruction to send the task descriptor address to
the DMU. Then, for every dependence of the task, it uses
the add dependence instruction to inform the DMU.

When the create task instruction is executed, the DMU
uses the TAT to generate a task ID. The Task Table is indexed
with the task ID and the entry is initialized by setting the
task descriptor address, setting to 0 the number of successors
and predecessors, and reserving a new list of successors and
a new list of dependences in the Successor and Dependence
List Arrays. If some structure of the DMU has no entries
available the instruction blocks until an entry is freed.

After the task is created, for every add dependence in-
struction an entry is allocated in DAT and Dependence Table.
The DMU uses TAT to obtain the task ID and DAT to obtain
the dependence ID. Then, the DMU behaves as described in
Algorithm 1. First the dependence is inserted in the list of
dependences of the task and the task ID is inserted in the
successor list of the last writer of the dependence. Then, if
the dependence is an input, the task ID is inserted in the
readers list of the dependence. Otherwise, if the dependence
is an output, all the readers of the dependence insert the task
in their successor lists,the reader list is flushed, and the task
becomes the last writer of the dependence.



Data: taskID
for succID in successor list of taskID do

Decrement #pred of succID;
if #pred of succID = 0 then

Insert succID in the Ready Queue;
end

end
for depID in dependence list of taskID do

Remove taskID from reader list of depID;
if lastWriterID of depID = taskID then

Mark lastWriterID of depID as invalid;
end
if lastWriterID of depID is invalid &&
reader list of depID is empty then

Free reader list of depID;
Free depID entry in DepTable and DAT;

end
end
Free successor list of taskID;
Free dependence list of taskID;
Free taskID entry in TaskTable and TAT;

Algorithm 2: Algorithm for finish task instruction.

2) Task Finalization: When a task finishes, the runtime
system uses the finish task instruction to communicate the
task descriptor address to the DMU, and this carries out the
steps described in Algorithm 2. In the first loop the DMU
wakes up the successor tasks by traversing the successor list
of the task and decrementing the number of predecessors
of each successor. If the number of predecessors becomes
zero, the successor task is moved to the Ready Queue. In the
second loop the task is removed from the reader list and the
last writer field of each of its dependences. Finally the DMU
frees the entries allocated for the task in the Task Table, the
TAT, and the Successor and Dependence List Arrays.

3) Implementing Task Schedulers in Software: After the
finalization of a task the runtime system requests ready tasks
to the DMU by issuing get ready task instructions in a loop.
For every get ready task instruction the DMU consults the
Ready Queue. If it is empty, a null pointer is returned.
Otherwise, the task ID at the head of the queue is retrieved
and used to index the Task Table to get the task descriptor
address and the number of successors that are returned to the
runtime system. Then the runtime system adds the returned
task descriptor address to a pool of ready tasks and stores
the number of successors in the task descriptor.

The pool of ready tasks can be used by the runtime system
to implement any scheduling policy. The scheduling algo-
rithms can traverse the pool of ready tasks in any order, move
ready tasks to different data structures, or perform any action
required by each particular implementation. By allowing the
usage of different task schedulers, TDM provides flexibility,
adaptability and composability to the system.

D. Additional Considerations

The size of the hardware structures of the DMU limit
the number of in-flight tasks and dependences. To preserve
correctness, the TDM ISA instructions have barrier seman-

tics, so they cannot be re-ordered in the CPUs and younger
instructions cannot be executed before the TDM instructions
commit. The DMU processes the instructions sequentially
and, if there is no space available in some structure, the
instruction is blocked until some in-flight task finishes.

TDM manages tasks and dependences inside parallel
regions and relies on the runtime system to handle barriers
and other global synchronization points. To do so, the master
thread executes the code sequentially and creates the tasks
while the worker threads request tasks and execute them. The
runtime system tracks how many tasks have been created by
the master thread and how many have been executed. When
the master thread reaches the barrier it adopts the behavior of
a worker thread, and when all the tasks have been executed
it resumes the sequential execution of the program.

The proposed design of TDM can be easily extended to
support context switches and multiprogrammed workloads.
A simple and effective solution is to tag TAT and DAT with
the operating system process ID, so different processes can
use TDM concurrently and the structures of the DMU do
not need to be saved and restored at context switch.

The centralized design of the DMU is not a limiting factor
for scalability. The DMU executes several instructions per
task that, all together, take tens to hundreds ns, while the
average task duration in our experiments is 4771 µs, as
shown in Section IV. Given that the task duration is 5 orders
of magnitude larger than the latency of the DMU instructions
per task, the DMU is able to scale up to thousands of
concurrent tasks before becoming a bottleneck.

IV. EXPERIMENTAL FRAMEWORK

A. Full-System Simulation Infrastructure

We employ gem5 [19] to simulate an ARM full-system
environment that models the application, the runtime system,
the operating system and the architecture in detail. We simu-
late a 32-core processor using the detailed out-of-order CPU
and memory models of gem5, extended with the proposed
architectural support for TDM. Table I summarizes the main
simulation parameters, including the selected sizes of the
TAT, DAT, Task Table, Dependence Table and the successor
(SLA), dependence (DLA) and reader (RLA) list arrays.
Section V-A performs a detailed design space exploration
to justify the selected sizes. Note that the list arrays contain
8 elements per entry, and the latency of accessing an entry
is 1 cycle. As explained in Section III, TDM operations
may require multiple accesses to the corresponding hardware
structures, so they require multiple cycles to finalize. These
latencies are modeled in detail in our simulator.

The simulated system is a Ubuntu 14.04 with a kernel
4.3. We use the Nanos++ 0.10a [20] runtime system, which
supports OpenMP 4.0 [3]. The runtime system is extended to
communicate with the DMU using the instructions described
in Section III. The ISA is extended to support the new in-
structions and their execution is modeled in the architecture.



Table I: Configuration of the gem5 full-system simulations.
Chip details

Cores 32 Out-of-order cores, single threaded, 2.0GHz
Core details

Fetch, issue, 4 instr/cyclecommit bandwidth

Branch predictor Tournament: 2K local pred., 8K global and choice pred.
4-way BTB 4K entries, RAS 16 entries

Issue queue Unified 64 entries
Reorder buffer 128 entries
Register file 256 int, 256 FP

Functional units
INT: 4 ALU (1 cycle), 2 mult (3 c.), 2 div (20 c.)
FP: 2 ALU (2 cycle), 2 mult (4 c.), 2 div (12 c.)
2 Ld/St unit (1 cycle)

Instr L1 cache 32KB, 2-way, 64B/line (2 cycles hit)
Data L1 cache 32KB, 2-way, 64B/line (2 cycles hit)
Shared L2 cache 4MB 16-way, 64B/line
Instruction TLB 256 entries fully-associative (1 cycle hit)
Data TLB 256 entries fully-associative (1 cycle hit)

DMU structures
TAT 2048 entries, 1 cycle per access, 8-way associative
DAT 2048 entries, 1 cycle per access, 8-way associative
Task Table, 2048 entries, 1 cycle per access
Dependence Table 2048 entries, 1 cycle per access
SLA, DLA, RLA 1024 entries, 1 cycle per access, 8 elements/entry

We extend gem5 to model a hardware FIFO queue for
task scheduling. This hardware structure is not required in
TDM, but we use it to model Carbon [10]. Combining
this hardware queue and the DMU we also model Task
Superscalar [11], which tracks data dependences and sched-
ules tasks in hardware. In the modeled Task Superscalar
pipeline, renaming of data dependences is not performed as
the evaluated benchmarks do not benefit from this feature.

Power consumption is evaluated with McPAT [21] using
a process technology of 22 nm, a voltage of 0.6V, and the
default clock gating scheme. We incorporate the changes
suggested by Xi et al. [22] to improve the accuracy of the
models. The hardware structures of the DMU are modeled
using CACTI 6.0 [23], adding the appropriate counters in
gem5 to measure the extra power introduced by the DMU.

B. Benchmarks and Task Granularity

To test TDM we use five benchmarks from PAR-
SECSs [24], a task-based OpenMP 4.0 implementation of
the PARSEC [25], together with four benchmarks from the
high performance computing domain: Cholesky, Histogram,
LU and QR. These benchmarks are representative algorithms
and use different parallelization strategies: Blackscholes and
Streamcluster use fork-join parallelism, Fluidanimate is a
3D stencil, and Dedup and Ferret use pipeline parallelism.
Regarding the other four benchmarks, Cholesky performs a
Cholesky decomposition of a matrix, Histogram computes
a cumulative histogram for all pixels of an image, LU does
a LU decomposition of a matrix, and QR calculates a QR
factorization of a matrix. Tiling is applied in these algorithms
so that tasks process 2D blocks of the matrices.

The benchmarks are compiled with Mercurium 1.99
source-to-source compiler [26] with gcc 4.6.4 as backend
compiler. Simlarge input sets are used for the PARSEC
benchmarks, Cholesky decomposes a dense 2048× 2048

1K
B

2K
B

4K
B

8K
B

4K
B

16
KB

64
KB

25
6K

B
25

6
12

8 64 32 4K
B

16
KB

64
KB

25
6K

B
1M

B
4K

B
16

KB
64

KB 2K
B

4K
B

16
KB

64
KB

25
6K

B 64 12
8

25
6

51
2

10
24

1

2

Ex
ec

. T
im

e

bla cho flu hist LU QR str
Figure 6: Execution time for different task granularities. The
X axis shows the size of the blocks processed by each task in
Blackscholes, Cholesky, Histogram, LU, and QR; the num-
ber of partitions of the 3D volume in Fluidanimate; and the
number of points processed by each task in Streamcluster.

Table II: Benchmark characteristics. Number of tasks and
average task duration with the optimal task granularity for
the software runtime system and for TDM.

Software TDM
# tasks Duration (µs) # tasks Duration (µs)

Blackscholes 3,300 1,770 6,500 823
Cholesky 5,984 183 5,984 183
Dedup 244 27,748 244 27,748
Ferret 1,536 7,667 1,536 7,667
Fluidanimate 2,560 1,804 2,560 1,804
Histogram 512 3,824 512 3,824
LU 1,512 424 1,512 424
QR 1,496 997 11,440 96
Streamcluster 42,115 376 42,115 376
Average 6,584 4,976 8,056 4,771

matrix, histogram processes a 4096×4096 image and gen-
erates a histogram with 10 bins, LU decomposes a sparse
2048×2048 matrix, and QR a dense 1024×1024 matrix.

In all benchmarks we ensure that parallel regions scale
well to 32 cores using performance analysis tools to visual-
ize the parallel executions. The optimal task granularity is
carefully selected to minimize load imbalance and execution
time in the baseline software approach. Figure 6 shows
the execution time with different task granularities growing
along the X axis (i.e., smaller to bigger from left to right).
Execution time is normalized to the optimal task granularity.
In Dedup and Ferret the task granularity cannot be changed
without modifying the application, as each task processes
a pipeline stage. In general, shorter task duration increases
parallelism, but leads to higher runtime system overheads.

Table II summarizes the number of tasks and their average
duration for each benchmark. The number of tasks ranges
from 244 (Dedup) to 42,115 (Streamcluster), and the average
duration between 96µs (QR) and 27ms (Dedup). The opti-
mal task granularity is used for the corresponding approach
(software or TDM) in all the experiments of the evaluation.

V. DESIGN SPACE EXPLORATION

A. TAT, DAT and List Arrays

Next, we perform a design space exploration to determine
the optimal size of the DMU hardware structures. We first
study the sizing of TAT and DAT, considering a DMU
implementation with N TAT entries, M DAT entries, and



51
2

10
24

20
48

40
96 51

2
10

24
20

48
40

96 51
2

10
24

20
48

40
96 51

2
10

24
20

48
40

96 51
2

10
24

20
48

40
96 51

2
10

24
20

48
40

96
0.0

0.5

1.0

Pe
rf.

 D
eg

ra
da

tio
n

cholesky
DAT

ferret
DAT

hist
DAT

LU
DAT

QR
DAT

AVG
DAT

512 TAT 1024 TAT 2048 TAT 4096 TAT

Figure 7: Average performance with different sizes of the
TAT and DAT. Results are normalized to an ideal DMU
with unlimited entries and equal latency.

128 512 1024 2048 128 512 1024 2048 128 512 1024 2048 128 512 1024 20480.80
0.85
0.90
0.95
1.00

Pe
rf.

 D
eg

ra
da

tio
n

Successor LA
128 Deps LA

Successor LA
512 Deps LA

Successor LA
1024 Deps LA

Successor LA
2048 Deps LA

2048 Readers LA
1024 Readers LA
512 Readers LA
128 Readers LA

Figure 8: Average performance with different sizes of the
list array (LA) structures. Results are normalized to an ideal
DMU with unlimited entries and equal latency.

unlimited entries in the list arrays. The size of the TAT and
the DAT determine the size of the Task and Dependence
Table, respectively. Figure 7 shows the performance obtained
when N and M vary between 512 and 4096. Performance
is normalized to an ideal design with an infinite number of
entries in all DMU structures and same latency.

Figure 7 shows results for 5 benchmarks. The rest of
benchmarks already achieve maximum performance with
512 entries in DAT and TAT. The geometric mean considers
all the benchmarks. The figure shows LU and QR are sensi-
tive to the DAT size, achieving maximum performance with
2048 entries. The other three benchmarks are sensitive to the
TAT size. The most demanding benchmark is Histogram, as
its tasks have a significant amount of dependences between
them and the distance between independent tasks is high.
Thus, it requires at least 2048 TAT entries to achieve max-
imum performance. On average, with 2048 entries in both
DAT and TAT, the DMU only suffers a 0.91% performance
degradation with respect to the ideal case with infinite entries
and same latency. We also explore the associativities of
TAT and DAT, results show that 8-way associative structures
minimize conflicts and offer the best performance.

Next we explore the size of the successor, dependence and
reader list arrays. Figure 8 shows the average performance
when these structures vary from 128 to 2048 entries, nor-
malized to an ideal design with an infinite number of entries
in all DMU structures and same latency.

These results clearly show that a design with 128 entries
in any of the list arrays leads to suboptimal performance. In
contrast, with 1024 entries in all the list arrays, performance

bla cho ded fer flu hist LU QR str AVG

0.8

1.0

Sp
ee

du
p

1 cycle 4 cycles 16 cycles

Figure 9: Performance degradation when varying the access
time of all DMU structures from 1 to 16 cycles. Results are
normalized to DMU structures with zero latency.

Table III: DMU storage (KB) and area (mm2) requirements.
Storage Area Storage Area

Task Table 23.00 0.026 SLA 12.25 0.019
Dep Table 5.25 0.013 DLA 12.25 0.019
TAT 18.75 0.031 RLA 12.25 0.019
DAT 18.75 0.031 ReadyQ 2.75 0.012

Total 105.25 KB 0.17 mm2

already saturates. On average, with 1024 entries in all list
arrays, the DMU only suffers a 1.1% performance degrada-
tion with respect to the ideal case with an infinite number
of entries and same latency. Doubling the size of all list
arrays leads to an average 1.0% performance degradation,
but requires a significant increase in area. For this reason,
we size all list arrays in the DMU with 1024 entries.

B. DMU Access Latency

As explained in Section III, the algorithms that implement
TDM instructions require accessing different hardware struc-
tures. Also, the lists stored in the list arrays may spread
over multiple entries, which requires multiple accesses to
traverse the complete lists. Consequently, DMU operations
require multiple cycles to finalize. Next, we evaluate the
performance of the DMU when varying the latencies of its
hardware structures. In these experiments we use the sizes
of the DMU structures determined in the previous section.

Figure 9 shows the performance degradation when in-
creasing the access time of all DMU structures from 1 to
16 cycles. Most benchmarks do not suffer any performance
degradation due to higher latencies, as with the optimal task
granularity DMU operations happen infrequently. Only LU
and QR are slightly affected by this parameter. On average,
performance degrades only 0.2% with a 1-cycle access time
and 0.9% with a 16-cycle access time.

C. DMU Area and Power Overhead

Table III shows the storage and area requirements of the
DMU for the sizes selected in Section V-A. Storage values
consider the number of bits of the task and dependence IDs,
which depend on the size of the tables they point to. The
structures are modeled in CACTI 6.0 [23] to obtain the area
values with a process technology of 22nm.

The components of the DMU have a negligible effect on
the power consumption, less than 0.01% of the total power.



bla cho ded fer flu hist LU QR str AVG0

25

50

75

100

Re
l. 

tim
e 

(%
) SW TDM

Figure 10: Percentage of time spent in task creation with a
pure software approach (SW) and with TDM.

The low power requirements of the DMU combined with
the small sizes of the hardware structures allow to design
the DMU with a 1-cycle access time to each data structure.

As a conclusion of this design space exploration, we select
a design with a DAT and TAT of 2048 entries and all the list
arrays of 1024 entries. The storage and area requirements
for this configuration, 105.25KB and 0.17mm2, are very
affordable with current design technology. The rest of this
paper makes use of this configuration in all the experiments.

D. Runtime Overhead Reduction

Next, we measure the impact of TDM in the task creation
time. Figure 10 shows the average time spent by the master
creating tasks and managing their dependences, which cor-
responds to the DEPS category in Figure 2. Task creation
time is not completely eliminated with TDM because of the
latency of the DMU structures and because some operations
are still performed in the runtime system, such as creating
task descriptors, issuing TDM instructions, etc. All bench-
marks benefit from the hardware support provided by the
DMU, achieving up to a 5.2x× reduction in task creation
time in Blackscholes. On average, task creation is reduced
from from 31.0% to 14.5% of the total CPU time, proving
the effectiveness of TDM. This reduction of task creation
time has a big impact on the idle time, that is reduced
from 32% to 22% on average, and translates into overall
application speedups as will be shown in Section VI.

E. Index Bit Selection for DAT

We show the importance of selecting the appropriate bits
of the dependence addresses to index the DAT. As described
in Section III-B1, when different blocks of the same data
structure are specified as dependences, many dependence
addresses have the same values in the lower bits, causing
conflicts if these bits are selected to index the DAT. To avoid
this problem, the DMU uses the size of the dependence to
select the bits of the dependence addresses to index the DAT.

Figure 11 shows the average number of occupied sets
in the DAT for the six benchmarks that are sensitive to
this situation. The X axis shows 5 numerical values that
correspond to different options to statically select the index
bits (e.g., 4 means the index bits start at the 4th lower
bit of the dependence address), and the proposed dynamic
mechanism (DYN) that uses the size of the dependence.

0 4 8 12 16 DYN 0 4 8 12 16 DYN 0 4 8 12 16 DYN 0 4 8 12 16 DYN 0 4 8 12 16 DYN
0

64

128

192

256

DA
T 

Oc
cu

pa
nc

y

blackscholes cholesky fluidanimate histogram QR

Static Dynamic

Figure 11: Occupancy of sets in DAT with static index bit
selection and with dynamic index bit selection.

Results show that each fixed value drastically changes the
occupancy of the DAT, from 1% to 88%. More importantly,
every benchmark requires selecting different index bits. This
happens because the benchmarks use different block sizes,
so the number of lower bits that are equal in the dependence
addresses changes in every benchmark. By using the size
of the dependences provided by the runtime system to
dynamically select the index bits, the DMU avoids conflicts
in the DAT and maximizes its occupancy in all benchmarks.

VI. FLEXIBLE SCHEDULING WITH TDM

This section illustrates the synergy of TDM with different
software schedulers that exploit the characteristics of the ap-
plications to improve performance and power consumption.

Five schedulers are used in the experiments: First-In
First-Out (FIFO) schedules tasks in the same order as they
become ready. Last-In First-Out (LIFO) schedules first the
last task that has become ready. Locality scheduler exploits
data locality and assigns tasks to cores aiming to minimize
data movements. When a task finishes executing on a core
and some of its successor tasks is ready, a successor is
executed on the core. If no successors are ready the first
task in the ready queue is scheduled. Successor scheduler
counts the number of successors of a task. If this number is
above a threshold it is placed in a high priority ready queue,
otherwise it is placed in a low priority ready queue. Threads
first check the high priority ready queue and, if it is empty,
they look for tasks in the low priority ready queue. Age
scheduler sorts tasks in the ready queue by their creation
time, so older tasks have higher priority than younger ones.

These schedulers can be used with TDM without any
modification. The runtime system communicates with the
DMU at task creation and finalization phases, and requests
all the tasks that have become ready after a task finishes. The
schedulers organize the ready tasks in software data struc-
tures and ready queues that implement the different policies.
TDM reduces task creation overheads and, consequently, all
schedulers benefit from this architectural support.

A. Performance Evaluation

We evaluate the performance of the different soft-
ware schedulers when they are deployed by an entirely
software-based runtime system and when they are com-
bined with TDM. For each application we select the best



blackscholes cholesky dedup ferret fluidanimate histogram LU QR streamcluster AVG

0.8
1.0
1.2
1.4

Sp
ee

du
p

FIFO OptSW FIFO+TDM LIFO+TDM Local+TDM Succ+TDM Age+TDM OptTDM

blackscholes cholesky dedup ferret fluidanimate histogram LU QR streamcluster AVG
0.5

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 E

D
P

FIFO OptSW FIFO+TDM LIFO+TDM Local+TDM Succ+TDM Age+TDM OptTDM
1.92

Figure 12: Speedup (top) and EDP reduction (bottom) with FIFO, LIFO, Locality-aware and Criticality-aware schedulers
using software runtime system and TDM. Results are normalized to the software runtime system with a FIFO scheduler.

scheduler with and without TDM, denoted OptTDM and
OptSW, respectively. Figure 12 shows the speedups of
OptSW, FIFO+TDM, LIFO+TDM, Locality+TDM, Succes-
sor+TDM, Age+TDM and OptTDM policies over a FIFO
scheduler without hardware support. The geometric mean
of the speedups is also reported (AVG).

In general, FIFO and LIFO schedulers show similar
performance except for Blackscholes, which is parallelized
with 64 independent chains of dependent tasks. With FIFO,
all independent chains progress at the same pace, while with
LIFO, 32 chains (one per core) progress much faster than
the others, leading to a significant load imbalance and 29.3%
performance degradation. A similar situation happens with
Locality+TDM and Successor+TDM, although performance
only degrades 7.8% and 9.2%, respectively.

TDM significantly reduces the task dependence manage-
ment overheads in Cholesky, as reported in Figure 10. The
locality scheduler further improves performance, as this is a
memory intensive application that reads blocks of a dense
matrix from memory. Thus, Cholesky is sensitive to data
locality, and Local+TDM outperforms FIFO+TDM by 4.2%.

Priority schedulers (Successor and Age) achieve important
improvements in benchmarks with a clear critical path in
the TDG. Dedup has many compute-intensive tasks and
each one of them is followed by a long I/O-intensive task.
I/O tasks cannot be executed in parallel, which is en-
forced by means of control dependencies between them, so
overlapping I/O with compute tasks maximizes parallelism.
Successor+TDM achieves this overlap, as I/O and compute
tasks have the same priority (all tasks have 1 successor), and
yields a 23.2% performance improvement. FIFO prioritizes
compute tasks because they become ready before their I/O
counterparts, so it fails in overlapping I/O and computation.
However, the successor scheduler harms performance in
Cholesky, as it delays the execution of tasks that process
the borders of the matrix, limiting the available parallelism.

Overall, OptSW performs worse than TDM with any
scheduler, while the best scheduler (Age+TDM) achieves

an average 9.1% speedup. More importantly, the best per-
formance is achieved with FIFO+TDM, LIFO+TDM, Local-
ity+TDM, Successor+TDM, and Age+TDM for 2, 2, 2, 2,
and 1 different benchmarks, respectively.

When the best scheduler per application is used, average
4.5% and 12.2% performance improvements are obtained
with OptSW and Opt+TDM, respectively. The benefits of
TDM are demonstrated by two facts: first, TDM provides
enhanced results for all the schedulers and, second, TDM
exposes the scheduler policy to the software, which yields
large performance benefits due to the flexibility it provides.

B. Energy Efficiency

This section evaluates the energy efficiency of TDM
combined with different schedulers. The bottom chart of
Figure 12 shows the Energy Delay Product (EDP) of FIFO,
LIFO, Locality, Successor and Age schedulers when com-
bined with TDM. This figure considers the power introduced
by the DMU hardware structures. Results are normalized to
a pure software runtime system with a FIFO scheduler, and
a geometric mean (AVG) of the results is shown.

Figure 12 shows that TDM provides significant EDP
reductions in seven benchmarks, and minimal reductions
are obtained in Ferret and Histogram. On average, EDP is
reduced up to 8.9% with the best software solution (OptSW),
while EDP is reduced between 3.1% and 15.4% when
combining different schedulers with TDM. Combining TDM
with the best scheduler per application (OptTDM) yields the
best results, achieving average reductions in EDP of 20.3%.

In terms of power consumption, the DMU consumes a
negligible fraction of the total power, less than 0.01%. All
benchmarks consume very similar power with the consid-
ered schedulers on a software runtime system and when
they combine the schedulers with TDM (less than 1.0%
difference). In addition, average power results show less
than 1.0% variation between different schedulers. Since the
average power consumption does not significantly change,
the improvements in total energy to solution follow the same
trends as Figure 12.



bla cho ded fer flu hist LU QR str AVG0.8

1.0

1.2

1.4

Sp
ee

du
p

FIFO Carbon Task Superscalar OptTDM

bla cho ded fer flu hist LU QR str AVG
0.6

0.8

1.0

1.2

No
rm

al
ize

d 
ED

P FIFO Carbon Task Superscalar OptTDM

Figure 13: Speedup (top) and EDP reduction (bottom) of
Carbon, Task Superscalar and TDM over a software runtime
system with FIFO scheduler.

C. Comparison with Other Proposals

This section compares TDM with two alternative hard-
ware support proposals for the runtime system. Carbon [10]
implements the task scheduler at the hardware level and
task dependence management is done in software by the
runtime system so, conceptually, it is the opposite to TDM.
Carbon provides ISA instructions that allow threads to add
and request ready tasks, and the hardware support consists
of a set of distributed hardware queues to keep ready tasks
and a fixed FIFO scheduling policy with work stealing. Task
Superscalar [11] offloads all the runtime system activities to
the architecture, including task dependence management and
task scheduling with a fixed FIFO policy. It uses an interface
similar to Carbon, and its hardware support consists of a
gateway, a ready queue, and distributed tables to track tasks
and dependences. As explained in Section II-B, thread syn-
chronizations overheads are negligible in our experiments,
so proposals that accelerate thread synchronization such as
ADM [15] are not included in the study.

The top chart of Figure 13 presents the speedup of Carbon,
Task Superscalar and TDM over a software runtime system
with a FIFO scheduler. TDM makes use of the best schedul-
ing policy per benchmark found in the previous section, and
the geometric mean of the results is also presented.

Carbon improves performance in Blackscholes, Dedup
and Streamcluster, reaching speedups of up to 7.3%. In the
rest of benchmarks its impact is negligible because, as shown
in Figure 2, the time spent in scheduling phases is very low,
while tracking task dependences is much more costly. As a
result, Carbon obtains a modest average speedup of 1.9%.

Task Superscalar performs both task scheduling and de-
pendence management in hardware. This approach provides
significant speedups in several benchmarks, reaching an
average 8.1% speedup. TDM achieves similar reductions in
runtime system overheads and further improves performance
by allowing flexible software schedulers, achieving an aver-
age speedup of 12.3% and clearly qualifying as the best

option. The advantage of TDM is particularly significant
in cases where using the appropriate scheduling policy is
fundamental to increase the parallelism, as in Dedup, where
TDM improves performance by 23.1% while Carbon and
Task Superscalar just reach 5.9% and 7.2%, respectively.

The bottom chart of Figure 13 shows the EDP of Carbon,
Task Superscalar and TDM normalized to the baseline soft-
ware solution with a FIFO scheduler. Results consider the
extra power consumption added by the hardware structures
of TDM, Carbon and Task Superscalar. Important EDP
reductions are obtained in seven of the benchmarks, while
more modest EDP reductions are obtained in the remaining
two benchmarks. On average, TDM reduces EDP by 20.4%
while Carbon and Task Superscalar only achieve reductions
of 5.1% and 14.1%, respectively.

Regarding hardware complexity, TDM lays between Car-
bon (simple hardware queues) and Task Superscalar. Ta-
ble III shows that the DMU requires 105.25KB for the
selected configuration. For the same configuration in terms
of number of in-flight tasks and dependences, Task Super-
scalar requires 769KB: a 1KB Gateway, a 256KB TRS (2048
entries×128B), a 256KB ORT (2048 entries×128B), and a
256KB Ready Queue (2048 entries×128B). The cost of the
OVT is not taken into account, as the DMU does not perform
dependence renaming. In addition, Task Superscalar requires
more power-hungry CAM look-ups than the DMU. All
together, the DMU requires 7.3× lower hardware complexity
than Task Superscalar.

Finally, another solution is to add an extra core devoted
to the runtime system. We observe that the performance of
a 33-core system with a pure software runtime system im-
proves marginally, 0.8% on average. In the 32-core baseline
task creation is already executed by one thread running on
a core, so the extra core just adds one more worker thread
and has no impact on dependence tracking overheads.

VII. RELATED WORK

TDM accelerates the dependence management opera-
tions of task-based data-flow programming models such as
OpenMP 4.0 [3], OmpSs [20], Codelets [27], Charm++ [28],
Habanero [29], or StarPU [30]. Other task-based models like
Cilk [31] or TBB [32] do not use data-flow annotations and
require the programmer to manually synchronize tasks. This
harms programmability but saves the overheads of discov-
ering and managing dependences in the runtime system.

Data-flow architectures like Monsoon [33], *T [34], or
EARTH [35] included hardware support for dependence
management and communication between instructions or
threads. These architectures were programmed with specific-
purpose programming models where the compiler statically
generated the TDG and established the dependences between
producers and consumers [36], [37], and scheduling was ei-
ther done statically at compile time using graph partitioning
techniques or dynamically in hardware using a fixed FIFO



queue. TDM targets modern data-flow programming models
that require a runtime system to generate the TDG, track
dependences and schedule tasks, which generate overheads
that were not encountered in data-flow architectures.

Similar to Carbon [10] and Task Superscalar [11],
other architectures use hardware task schedulers. These
approaches rely on programmers or programming model
semantics to establish dependences between tasks, so they do
not offer hardware support for dependence management in
task-based data-flow programming models. GPUs use hard-
ware schedulers for the kernels, that can be synchronized
with CUDA streams [38] or with queues and barrier packets
in HSA [39]. In Pangaea [40] the CPU schedules tasks on
the GPU, and both communicate via user-level interrupts.
Swarm [12] relies on speculative task execution and conflict
detection to preserve dependences. Swarm requires hardware
support for speculation instead of for dependence manage-
ment and uses either a FIFO or a spatial scheduler fixed in
the architecture [13]. Fractal [14] extends Swarm to allow
nested parallelism by means of task domains, that can be
ordered or unordered to avoid over-serialization.

Like ADM [15], some works propose to add architectural
support for thread synchronization primitives, reducing the
overheads caused by concurrency. These solutions allow to
implement different scheduling policies in software with
reduced hardware complexity, but they do not accelerate
all the operations of the dependence management and task
scheduling phases, so they are less effective in mitigating
runtime system overheads. CAF [41] provides hardware sup-
port to optimize core-to-core queue-based communications,
adding a specialized accelerator that supports various queue
management functionalities. QOLB [42] proposes an imple-
mentation for lock primitives based on distributed queues
where the waiting cores spin locally, preventing unnecessary
network traffic. Active Memory Operations [43] extend the
memory controllers of distributed shared-memory systems
so that synchronization and heavy write sharing operations
can be executed in the node where the data resides.

Another way to mitigate the task creation bottleneck
is parallelizing it with nested parallelism. Although most
parallel programming models support nesting, the practical
usage of this paradigm requires a hierarchical decomposition
of the algorithm and does not allow to specify dependencies
across different nesting levels. In addition, most accelerators
have null or limited support for nesting. Due to all these
restrictions, it is much more appropriate to alleviate the task
creation bottleneck via the TDM hardware support instead
of transferring this responsibility to the software stack.

In general, works that propose hardware support for task
scheduling show promising results for hundreds of cores
running workloads with extremely fine-grained tasks. For
TDM we consider a 32-core architecture and we select the
best task granularity for each benchmark. In this scenario
the task size is orders of magnitude bigger than the ones

used in other works of the literature, so the trade-offs and
the sources of overheads change significantly. This paper
shows that, for mid-grained and not extremely fine-grained
tasks, the main bottleneck is dependence management, while
the overheads of task scheduling and thread synchronization
are very low. In a scenario with finer-grained parallelism
and higher core counts, TDM would still be able to mitigate
dependence management overheads, so task scheduling or
thread synchronization could become the main bottleneck.
TDM is compatible with many proposals that accelerate task
scheduling and, in particular, TDM combines nicely with the
proposals that accelerate thread synchronization primitives
to reduce task scheduling overheads while maintaining the
advantages of flexible task scheduling.

VIII. CONCLUSIONS

Task-based programming models are very appealing for
large-scale multi-cores. A key aspect of task-parallel pro-
grams is the task granularity, which determines the potential
to exploit the available parallelism and to ensure load
balancing, but also dictates the runtime system overheads.

This paper proposes TDM, a hardware/software co-desig-
ned mechanism to accelerate task dependence management
operations while allowing flexible task scheduling in soft-
ware. Unlike previous works with schedulers fixed in the
architecture, the separation of concerns in TDM provides
high degrees of flexibility, adaptability and composability,
which are key in modern computing infrastructures with
multiple sockets and off-chip accelerators, and also allows
to capitalize on the benefits that different scheduling poli-
cies provide for certain applications and environments. In
addition, the architectural support of TDM includes novel
techniques that maximize efficiency, such as renaming IDs
to reduce the storage requirements or leveraging the size of
the dependences to avoid conflicts in the hardware structures
when the lower bits of the dependence addresses are equal.

As a result, TDM outperforms software runtime systems
by an average 12.3% while reducing EDP by 20.4%. Com-
pared to pure hardware solutions, TDM achieves an average
speedup of 4.2% with 7.3× lower hardware complexity.

ACKNOWLEDGMENTS

This work has been supported by the RoMoL ERC Ad-
vanced Grant (GA 321253), by the European HiPEAC Net-
work of Excellence, by the Spanish Ministry of Science and
Innovation (contracts TIN2015-65316-P, TIN2016-76635-
C2-2-R and TIN2016-81840-REDT), by the Generalitat de
Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272),
and by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 671697
and No. 671610. M. Moretó has been partially supported by
the Ministry of Economy and Competitiveness under Juan de
la Cierva postdoctoral fellowship number JCI-2012-15047.



REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, H. nien Yu, V. L. Rideout, E. Bassous,
Andre, and R. Leblanc, “Design of ion-implanted MOSFETs with
very small physical dimensions,” IEEE Journal of Solid-State Circuits,
vol. 9, no. 5, pp. 256–268, Oct. 1974.

[2] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in International Symposium on Computer Ar-
chitecture (ISCA), 2004, pp. 64–75.

[3] “OpenMP Application Program Interface. Version 4.0. July 2013.”
[4] M. Manivannan, V. Papaefstathiou, M. Pericas, and P. Stenstrom,

“Radar: Runtime-assisted dead region management for last-level
caches,” in International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 644–656.

[5] A. Pan and V. S. Pai, “Runtime-driven shared last-level cache man-
agement for task-parallel programs,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
2015, pp. 11:1–11:12.

[6] L. Alvarez, M. Moreto, M. Casas, E. Castillo, X. Martorell, J. Labarta,
E. Ayguade, and M. Valero, “Runtime-guided management of scratch-
pad memories in multicore architectures,” in International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2015,
pp. 379–391.

[7] E. Castillo, M. Moretó, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki,
R. M. Badia, J. L. Bosque, R. Beivide, E. Ayguadé, J. Labarta, and
M. Valero, “CATA: criticality aware task acceleration for multicore
processors,” in International Parallel and Distributed Processing Sym-
posium (IPDPS), 2016, pp. 413–422.

[8] M. Valero, M. Moreto, M. Casas, E. Ayguade, and J. Labarta,
“Runtime-aware architectures: A first approach,” Journal on Supercom-
puting Frontiers and Innovations, vol. 1, no. 1, pp. 29–44, Jun. 2014.

[9] M. Casas, M. Moreto, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes,
L. Jaulmes, O. Palomar, O. Unsal, A. Cristal et al., “Runtime-aware
architectures,” in International Conference on Parallel and Distributed
Computing (Euro-Par), 2015, pp. 16–27.

[10] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,” in International
Symposium on Computer Architecture (ISCA), 2007, pp. 162–173.

[11] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero, “Task superscalar: An out-of-order task
pipeline,” in International Symposium on Microarchitecture (MICRO),
2010, pp. 89–100.

[12] M. C. Jeffrey, S. Subramanian, C. Yan, J. S. Emer, and D. Sanchez, “A
scalable architecture for ordered parallelism,” in International Sympo-
sium on Microarchitecture (MICRO), 2015, pp. 228–241.

[13] M. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez,
“Data-centric execution of speculative parallel programs,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2016, pp. 1–13.

[14] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying,
J. Emer, and D. Sanchez, “Fractal: An execution model for fine-
grain nested speculative parallelism,” in International Symposium on
Computer Architecture (ISCA), 2017, pp. 587–599.

[15] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural sup-
port for fine-grain scheduling,” in International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2010, pp. 311–322.

[16] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta, and
M. Valero, “Criticality-aware dynamic task scheduling for heteroge-
neous architectures,” in International Conference on Supercomputing
(ICS), 2015, pp. 329–338.

[17] H. Topcuouglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, Mar. 2002.

[18] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” IEEE
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008.

[19] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. Hill, and D. Wood, “The gem5 simulator,”
Computer Architecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[20] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: A proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 2, pp. 173–193, Jun. 2011.

[21] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in International Symposium
on Microarchitecture (MICRO), 2009, pp. 469–480.

[22] S. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in McPAT and potential impacts on architectural
studies,” in International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 577–589.

[23] N. Muralimanohar and R. Balasubramonian, “CACTI 6.0: A tool to
understand large caches,” 2009.

[24] D. Chasapis, M. Casas, M. Moretó, R. Vidal, E. Ayguadé, J. Labarta,
and M. Valero, “PARSECSs: Evaluating the impact of task parallelism
in the parsec benchmark suite,” ACM Transactions on Architecture and
Code Optimization, vol. 12, no. 4, pp. 41:1–41:22, Dec. 2015.

[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in International
Conference on Parallel Architectures and Compilation Techniques
(PACT), 2008, pp. 72–81.

[26] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and
J. Labarta, “Nanos mercurium: a research compiler for OpenMP,” in
European Workshop on OpenMP (EWOMP), 2004, pp. 103–109.

[27] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using a
”Codelet” program execution model for exascale machines,” in Inter-
national Workshop on Adaptive Self-Tuning Computing Systems for the
Exaflop Era, 2011, pp. 64–69.

[28] L. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on c++,” in Conference on Object-oriented
Programing Systems, Languages, and Applications, 1993, pp. 91–108.

[29] J. Shirako, J. M. Zhao, V. K. Nandivada, and V. N. Sarkar, “Chunking
parallel loops in the presence of synchronization,” in International
Conference on Supercomputing (ICS), 2009, pp. 181–192.

[30] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore ar-
chitectures,” in International Conference on Parallel Processing (Euro-
Par), 2009, pp. 863–874.

[31] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Ran-
dall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in International Symposium on Principles and Practice of Parallel
Programming (PPoPP), 1995, pp. 207–216.

[32] J. Reinders, Intel threading building blocks - outfitting C++ for multi-
core processor parallelism. O’Reilly Media, 2007.

[33] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit token-
store architecture,” in International Symposium on Computer Architec-
ture (ISCA), 1990, pp. 82–91.

[34] R. S. Nikhil, G. M. Papadopoulos, and Arvind, “*T: A Multithreaded
Massively Parallel Architecture,” in International Symposium on Com-
puter Architecture (ISCA), 1992, pp. 156–167.

[35] H. H. J. Hum, O. Maquelin, K. B. Theobald, X. Tian, X. Tang, G. R.
Gao, P. Cupryk, N. Elmasri, L. J. Hendren, A. Jimenez, S. Krishnan,
A. Marquez, S. Merali, S. S. Nemawarkar, P. Panangaden, X. Xue,
and Y. Zhu, “A design study of the EARTH multiprocessor,” in
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 1995, pp. 59–68.

[36] K. Arvind and R. S. Nikhil, “Executing a program on the mit tagged-
token dataflow architecture,” IEEE Transactions on Computers, vol. 39,
no. 3, pp. 300–318, Mar. 1990.

[37] R. S. Nikhil, “The programming language id and its compilation for
parallel machines,” International Journal of High Speed Computing,
no. 2, pp. 171–223, Jun. 1993.

[38] “CUDA C Programming Guide. Version 8.0. June 2017.”
[39] “HSA Platform System Architecture Specification. Vers 1.0. Jan 2015.”
[40] H. Wong, A. Bracy, E. Schuchman, T. M. Aamodt, J. D. Collins,

P. H. Wang, G. Chinya, A. K. Groen, H. Jiang, and H. Wang, “Pan-
gaea: A tightly-coupled ia32 heterogeneous chip multiprocessor,” in
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008, pp. 52–61.

[41] Y. Wang, R. Wang, A. Herdrich, J. Tsai, and Y. Solihin, “CAF: Core
to core communication acceleration framework,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2016, pp. 351–362.

[42] A. Kägi, D. Burger, and J. R. Goodman, “Efficient synchronization: Let
them eat QOLB,” in International Symposium on Computer Architec-
ture (ISCA), 1997, pp. 170–180.

[43] Z. Fang, L. Zhang, J. B. Carter, A. Ibrahim, and M. A. Parker, “Active
memory operations,” in International Conference on Supercomputing
(ICS), 2007, pp. 232–241.


	Introduction
	Background and Motivation
	Task-based Programming Models
	Characterizing Runtime System Activity

	TDM Design
	Runtime System - Architecture Interface
	DMU Hardware Design
	Task and Dependence Identifier Renaming
	Task and Dependence Tracking

	Operational Model
	Task Creation
	Task Finalization
	Implementing Task Schedulers in Software

	Additional Considerations

	Experimental Framework
	Full-System Simulation Infrastructure
	Benchmarks and Task Granularity

	Design Space Exploration
	TAT, DAT and List Arrays
	DMU Access Latency
	DMU Area and Power Overhead
	Runtime Overhead Reduction
	Index Bit Selection for DAT

	Flexible Scheduling with TDM
	Performance Evaluation
	Energy Efficiency
	Comparison with Other Proposals

	Related Work
	Conclusions
	References

